Contents

Prefac	e		(v)
Chap	oter 1		
Elect	tromech	anical Energy Conversion	
1.1	Electrom	echanical Energy Conversion Devices	1
	1.1.1	Generator Action	1
	1.1.2	Motor Action	2
1.2	Principle	of Electromechanical Energy Conversion	2
1.3	Electrom	echanical Force	3
1.4	Energy F	low in Electromechanical Systems	4
1.5	Energy B	Balance in Electromechanical Systems	4
	1.5.1	Singly Excited System (without a Rotor)	5
	1.5.2	Singly Excited System (with Rotor)	6
1.6	Static En	ergization	8
1.7	Dynamic Energization		8
	1.7.1	Slow Movement of Rotor	9
	1.7.2	Fast Movement of Rotor	10
	1.7.3	Transient Rotor Movement	11
1.8	Doubly E	Excited System	12
1.9 Physical Concept of Force and Torque Production		Concept of Force and Torque Production	14
	1.9.1	DC Machines	14
	1.9.2	Synchronous Machines	15
	1.9.3	Induction Machines	16
	1.9.4	Summary	16
Reviev	v Question	s	17
Proble	ems		17
Chap	oter 2		
Singl	le Phase	Transformer	
2.1	Introduct	ion	19
2.2	Principle	of Operation	19

2.3	Constructional Features	20	
2.4	Core Type Construction		
2.5	Shell Type Construction 21		
2.6	Types of Transformer Stampings		
2.7	EMF Equation	22	
2.8	Equivalent Circuit and Phasor Diagram on No Load	24	
2.9	Magnetizing Current v/s Magnetizing Inrush Current	26	
2.10	Equivalent Circuit and Phasor Diagram on Load	28	
2.11	Power Flow Analysis	32	
2.12	Per Unit (pu) Value	33	
2.13	Voltage Regulation	34	
	2.13.1 Voltage Regulation by Approximate Method	35	
2.14	Losses in a Transformer	38	
2.15	Efficiency	39	
2.16	All Day Efficiency 43		
2.17	Tests on Transformers	45	
	2.17.1 Open Circuit Test	46	
	2.17.2 Short Circuit Test	47	
	2.17.3 Polarity Test	48	
	2.17.4 Sumpner's Back to Back Test	49	
2.18	Merits of Transformer	52	
2.19	Test for Separation of Hysteresis and Eddy Current Losses	53	
Review	v Questions	56	
Proble	ms	57	
Снаг	PTER 3		
Thre	e Phase Transformer		
3.1	Construction	59	
3.2	Three Phase Core Type Transformer	59	
3.3	Three-Phase Shell Type Transformer	60	
3.4	Three Phase Unit Transformer versus Bank of 3 Single-Phase Transformers	62	
3.5	Three Phase Transformer Connections	63	
	3.5.1 Delta-Star Connection	63	
	3.5.2 Star-Delta Connection	64	

			Contents	(ix)
	3.5.3	Star-Star Connection	(54
	3.5.4	Delta-Delta Connection	6	66
3.6	Three Pha	ase Transformer Phasor Groups (Vector Groups)	6	56
	3.6.1	Zero Phase Displacement Yy0 Connection	(67
	3.6.2	Zero Phase Displacement Dd0 Connection	6	58
	3.6.3	180° Phase Displacement Yy6 Connection	(59
	3.6.4	180° Phase Displacement Dd6 Connection	7	70
	3.6.5	-30° Phase Displacement Dy1 Connection	7	70
	3.6.6	-30° Phase Displacement Yd1 Connection		71
	3.6.7	30° Phase Displacement Dy11 Connection		72
	3.6.8	30° Phase Displacement Yd11 Connection	7	73
3.7	Effect of	Connections on Parallel Operation of Transformers	7	74
3.8	Open Del	ta (V-V) Connection	7	74
3.9	Open Sta	r Connection	7	76
3.10	Three Pha	ase to Two Phase (Scott-Connected) Transformation	7	77
3.11	Three Pha	ase to Six Phase Connections	8	32
	3.11.1	Star or Delta/Double Star Connection	8	32
	3.11.2	Star or Delta / Double Delta Connection	{	35
	3.11.3	Delta/Diametral Connection	8	36
	3.11.4	Zigzag Connected Transformer	{	37
3.12	Phasor G	roups with Zigzag Connected Transformers	8	38
3.13	3 Phase to	o 6 Phase Conversion using Double Zigzag Connection	8	38
3.14	3 Phase to	o 12 Phase Conversion using Two Times Double Zigzag Connect	ion 8	39
3.15	3 Phase to	o 12 Phase Conversion using Double Diametral Connection	8	39
3.16	Applicati	on of 3 Phase to 12 Phase Conversion	8	39
3.17	Excitation	n Phenomenon and Harmonics in Transformers	8	39
3.18	Excitation	n Phenomenon with Zero Hysteresis Loss	Ç	91
	3.18.1	Unsaturated Magnetic Circuit	g	91
	3.18.2	Saturated Magnetic Circuit	Ģ	92
3.19	Harmonio	es in Delta Connected Transformer	Ģ	92
3.20	Groundin	g of Transformer Neutral	g	92
3.21	Groundin	g Transformer	Ģ	92
3.22	Effect of	Core Construction on Harmonic Voltages	Ģ	93
	3.22.1	Transformer with Interlinked Magnetic Circuit	g	93

(x) | Contents

	3.22.2	Transformers with Independent Magnetic Circuits	93
3.23	Effect of	Harmonic Currents	94
3.24	Effect of Harmonic Voltages		
3.25	Tertiary Winding (3 Winding Transformer)		
3.26	Stabilizat	ion by Tertiary Winding	96
3.27	Equivaler	nt Circuit of 3 Winding Transformer	97
3.28	Parallel C	Operation of Transformers	98
3.29	Parallel C	Operation of Single Phase Transformers	98
3.30	Per Unit S	System	99
3.31	Parallel C	Operation of 3 Phase Transformers	99
	3.31.1	Essential Conditions	99
	3.31.2	Desirable Conditions	100
3.32	Load shar	ring by Two Transformers with Equal Voltage Ratio	100
3.33	Load shar	ring by Two Transformers with Unequal Voltage Ratio	103
3.34	Auto-Tra	nsformer	106
	3.34.1	Single-phase Auto-Transformer	106
	3.34.2	Ratio of Weight of Copper in Auto-Transformer to Two Winding Transformer	107
	3.34.3	Power Transferred by Transformer Action in Auto-Transformer	108
3.35	Three Pha	ase Auto-Transformer	109
3.36	Two Win	ding Transformer as Auto-Transformer	110
3.37	Efficienc	y	110
3.38	Merits		110
3.39	Application	ons	110
Review	v Question:	s	111
Proble	ems		111
Сная	PTER 4		
DC (Generato	ors	
4.1	Introducti	ion to DC Machines	115
4.2	Construct	tion of DC Machines	115
4.3	Principle	of Operation of DC Machines	115
4.4	Types of	DC Machines	116

			Contents (xi)
4.5	Circuit M	Iodels	117
	4.5.1	Generating Mode	117
	4.5.2	Motoring Mode	118
4.6	Methods	of Excitation	118
	4.6.1	Circuit Models of various types of DC Machines	118
4.7	Armature	Winding of DC Machines	121
4.8	Equalizer	Rings	127
4.9	Armature	Reaction	128
	4.9.1	Shifting of Magnetic Neutral Plane (MNP)	129
4.10	Mitigatio	n of Adverse Effects of Armature Reaction	133
4.11	Commuta	ation	134
4.12	Character	ristics of DC Generators	136
4.13	Open Cir	cuit Characteristic of DC Generators	137
	4.13.1	Separately Excited DC Generator	137
	4.13.2	Self-Excited DC Shunt Generator	138
	4.13.3	Self-Excited DC Series Generator	141
4.14	External	and Internal Characteristics of DC Generators	141
	4.14.1	Separately Excited DC Generators	141
	4.14.2	Self-Excited DC Shunt Generators	142
	4.14.3	Self Excited DC Series Generators	143
	4.14.4	DC Compound Generators	144
4.15	Losses an	nd Efficiency of DC Generators	146
	4.15.1	Copper Loss (I ² R Loss)	146
	4.15.2	Iron Loss	146
	4.15.3	Mechanical Loss	146
	4.15.4	Efficiency	147
4.16	_	Regulation of DC Generators	147
4.17		Operation of DC Generators	148
	4.17.1	Parallel Operation of DC Shunt Generators	148
	4.17.2	Parallel Operation of DC Series Generators	151
4.18	Applicati	ons of DC Generators	151
Review Questions			152
Proble	ems	152	

(xii) | Contents

CHAPTER 5

Do	٠ ١	ÆΩ	to	rs
$\boldsymbol{\nu}$	ι۱	ΛU	·ιυ	1 2

5.1	Working	Principle of DC Motors	155
	5.1.1	Production of Torque	155
5.2	Productio	n of Torque	156
5.3	Counter of	or Back EMF	158
5.4	Types of	DC Motors	158
	5.4.1	Separately Excited DC Motors	159
	5.4.2	Self Excited DC Shunt Motors	159
	5.4.3	Self Excited DC Series Motors	160
	5.4.4	DC Compound Motors – Short Shunt Cumulative	160
	5.4.5	DC Compound Motors – Short Shunt Differential	161
	5.4.6	DC Compound Motors-Long Shunt Cumulative	161
5.5	Operating	Characteristics of DC Motors	162
	5.5.1	Characteristics of Separately Excited DC Motors	162
	5.5.2	Characteristics of Shunt Motors	166
	5.5.3	Characteristics of DC Series Motors	167
	5.5.4	Characteristics of DC Compound Motors	169
5.6	Comparis	on of Different Types of DC Motors	170
5.7	Application	ons of DC Motors	172
5.8	Necessity	of DC Motor Starters	172
	5.8.1	Three-Point DC Shunt Motor Starters	173
	5.8.2	Four-Point DC Shunt Motor Starters	175
	5.8.3	DC Series Motor Starters	176
	5.8.4	Calculation of Step Resistors for DC Shunt Motor Starters	177
5.9	Introducti	ion to Soft Starting of DC Shunt and Series Motors	181
	5.9.1	Controlled Rectifier Circuit	181
	5.9.2	Chopper Circuit	183
5.10	Speed Co	ntrol of DC Motors	184
	5.10.1	Field Control Method	185
	5.10.2	Armature Control Method	186
	5.10.3	Ward Leonard Method (Voltage Control)	188
5.11	Losses an	d Efficiency	189
	5.11.1	Iron Loss	189

			Contents (xiii)
	5.11.2	Copper Loss	189
	5.11.3	Mechanical Loss	190
	5.11.4	Efficiency	190
5.12	Tests on l	DC Motors	191
	5.12.1	Brake Test (Direct Method)	191
	5.12.2	Swinburne's Test (Indirect Method)	192
	5.12.3	Regenerative/Hopkinson' Test (Indirect Method)	193
5.13	Concept	of Braking of DC Motors	195
	5.13.1	Rheostatic (Dynamic) Braking	196
	5.13.2	Regenerative Braking	198
	5.13.3	Plugging (Reverse Current Braking)	199
5.14	Applicati	ons of DC Motors	200
Review	v Question.	s	200
Problems			201